Organization

IWANN 2011 Organizing Committee

Honorary Chairs
Alberto Prieto University of Granada
Francisco Sandoval University of Malaga

Conference Chairs
Joan Cabestany Polytechnic University of Catalonia
Ignacio Rojas University of Granada
Gonzalo Joya University of Malaga

Technical Program Chairs
Francisco Garcia University of Malaga
Miguel Atencia University of Malaga

Satellite Worshops Chairs
Juan M. Corchado University of Salamanca
Jose Bravo University of Castilla la Mancha

Publicity and Publication Chairs
Pedro Castillo University of Granada
Alberto Guillen University of Granada
Beatriz Prieto University of Granada

IWANN 2011 Program Committee

Plamen Angelov University of Lancaster
Cecilio Angulo Polytechnic University of Catalonia
A. Artes Rodriguez University of Carlos III, Madrid
Antonio Bahamonde University of Oviedo
R. Babuska Delft University of Technology
Sergi Bermejo Polytechnic University of Catalonia
Piero P. Bonissone GE Global Research
Andreu Catala Polytechnic University of Catalonia
Gert Cauwenberghs University of California, San Diego
Jesus Cid-Sueiro University of Carlos III, Madrid
Rafael Corchuelo University of Seville
Óscar Cordón
Carlos Cotta
Marie Cottrell
Alicia D’Anjou
Luiza De Macedo Mourelle
Dante Del Corso
Angel P. del Pobil
Richard Duro
Marcos Faundez-Zanuy
J. Manuel Ferrández
Kunihiro Fukushima
Chistian Gamrat
Patrik Garda
F. Javier Gonzalez Cañete
Karl Goser
Manuel Graña
Anne Guerin-Dugue

Hani Hagras
Alister Hamilton
Jeanny Hérault
Luis Javier Herrera
Francisco Herrera
Cesar Hervás
Tom Heskes
Pedro Isasi
Simon Jones
Christian Jutten

Kathryn Klemic
Amaury Lendasse
Kurosh Madani
Jordi Madrenas
Luís Magdalena
Dario Maravall
Bonifacio Martín Del Brio
Francesco Masulli
Jose M. Molina
Augusto Montisci
Claudio Moraga
Juan M. Moreno
Klaus-Robert Muller
Jose Muñoz
Alan F. Murray
Jean-Pierre Nadal

European Centre for Soft Computing
University of Malaga
University of Paris I
University of the Basque Country
State University of Rio de Janeiro (UERJ)
Polytechnic of Turin
University of Jaume I, Castellon
University of A Coruña
Polytechnic University of Mataro
Polytechnic University of Cartagena
Takatsuki, Osaka
CEA, Gif sur Yvette
University Paris Sud, Orsay
University of Malaga
University of Dortmund
University of the Basque Country
Institut National Polytechnique de Grenoble
University of Essex
University of Edinburgh
GIPSA-Lab, INPG, Grenoble
University of Granada
University of Granada
University of Cordoba
Radboud University Nijmegen
University of Carlos III, Madrid
University of Loughborough
GIPSA-lab/DIS - CNRS - Grenoble University
Yale University
Helsinki University of Technology
University of Paris XII
Polytechnic University of Catalonia
ECSC Mieres
Polytechnic University of Madrid
University of Zaragoza
University of La Spezia, Genoa
University of Carlos III, Madrid
University of Cagliari
European Centre for Soft Computing
Polytechnic University of Catalonia
FIRST, Berlin
University of Malaga
Edinburgh University
Normal Superior School, Paris
Nadia Nedjah
Erkki Oja
Madalina Olteanu
Julio Ortega
Kevin M. Passino
Witold Pedrycz
Francisco Pelayo
Vincenzo Piuri
Hector Pomares
Carlos G. Puntonet
Leonardo Reyneri
Eduardo Ros
Ulrich Rueckert
Eduardo Sanchez
Jordi Solé-Casals
Peter Szolgyay
John Taylor
Carme Torras
I. Burhan Turksen
Mark Van Rossum
Marley Vellasco
Alfredo Vellido
Michel Verleysen
Thomas Villmann
Changjiu Zhou
Ahmed Zobaa
Pedro Zufiria

State University of Rio de Janeiro
Helsinki University of Technology
University of Paris I
University of Granada
The Ohio State University USA
University of Alberta
University of Granada
University of Milan
University of Granada
University of Granada
Polytechnic of Turin
University of Granada
University of Paderborn
LSI, EPFL
University of Vic
Pazmany Peter Catholic University
Kings College London, UK
Polytechnic University of Catalonia
TOBB Econ Technol. University, Ankara
University of Edinburgh
Pontif. Catholic University of Rio de Janeiro
Polytechnic University of Catalonia
Catholic University of Louvain-la-Neuve
University of Leipzig
Singapore Polytechnic
University of Cairo
Polytechnic University of Madrid

IWANN 2011 Reviewers

Carlos Affonso
Vanessa Aguiar
Arnulfo Alanis Garza
Amparo Alonso-Betanzos
Juan Antonio Alvarez
Jhon Edgar Amaya
César Andrés
Anastassia Angelopoulou
Plamen Angelov
Davide Anguita
Cecilio Angulo
Angelo Arleo
Manuel Atencia
Miguel Atencia

Nove de Julho University
University of A Coruña
Instituto Tecnologico de Tijuana
University of A Coruña
University of Seville
University of Tachira
Complutense University of Madrid
University of Westminster
Lancaster University
University of Genoa
Polytechnic University of Catalonia
CNRS - University Pierre and Marie Curie
Paris VI
IIIA-CSIC
University of Malaga
Jorge Azorin
Davide Bacci
Antonio Bahamonde
Halima Bahi
Javier Bajo
Juan Pedro Bandera
Cristian Barrué
Bruno Baruque
David Becerra
Lluis A. Belanche-Munoz
Sergi Bermejo
Nicu Bizdoaca
Juan Botia
Julio Bregáins
Gloria Bueno
Joan Cabestany
Inma P Cabrera
Tomasa Calvo
Jose Luis Calvo-Rolle
Mariano Carbonero-Ruz
Carlos Carrascosa

Luis Castedo
Pedro Castillo
Ana Cavalli
Miguel Cazorla
Raymond Chiong
Jesus Cid-Sueiro
Máximo Cobos
Valentina Colla
Feijoo Colomine
Pablo Cordero
Óscar Cordón
Francesco Corona
Ulises Cortes
Carlos Cotta
Marie Cottrell
Mario Crespo-Ramos
Raúl Cruz-Barbosa
Manuel Cruz-Ramírez

Erzsébet CsuhaJ-Varjú
Daniela Danciu
Adriana Dapena
Alberto De La Encina

University of Alicante
IMT Lucca School for Advanced Studies
University of Oviedo at Gijón, Asturias
University of Annaba
Pont. University of Salamanca
University of Malaga
Polytechnic University of Catalonia
University of Burgos
University of the West of Scotland
Polytechnic University of Catalonia
Polytechnic University of Catalonia
University of Craiova
University of Murcia
University of A Coruña
University of Castilla-La Mancha
Polytechnic University of Catalonia
University of Malaga
University of Alcalá
University of A Coruña
E.T.E.A - Cordoba University
GTI-IA DSIC Universidad Politecnica de Valencia
University of A Coruña
University of Granada
GET/INT
University of Alicante
Swinburne University of Technology
University of Madrid
Universidad Politecnica de Valencia
Scuola Superiore S. Anna
University of Tachira
University of Malaga
European Centre for Soft Computing
TKK
Polytechnic University of Catalonia
University of Malaga
Université Paris I
University of Oviedo
Universidad Tecnológica de la Mixteca
Departamento de Informática y Análisis Numérico
Hungarian Academy of Sciences
University of Craiova
University of A Coruña
Universidad Complutense
Luiza De Macedo Mourelle State University of Rio de Janeiro (UERJ)

Suash Deb C.V. Raman College of Engineering

José Del Campo-Ávila University of Malaga

Angel P. Del Pobil Jaume-I University

Enrique Dominguez University of Malaga

Julian Dorado University of A Coruña

Richard Duro University of A Coruña

Gregorio Díaz University of Castilla-La Mancha

Marta Díaz Polytechnic University of Catalonia

Emil Eirola Helsinki University of Technology

Patrik Eklund Umea University

Pablo Estevez University of Chile

Marcos Faundez-Zanuy Escola Universitaria Politecnica de Mataro

Carlos Fernandez University of A Coruña

J. Fernandez De Cañete University of Malaga

Alberto Fernandez Gil University Rey Juan Carlos

E. Fernandez-Blanco University of A Coruña

J.C. Fernández Caballero University of Cordoba

M. Fernández Carmona University of Malaga

F. Fernández De Vega University of Extremadura

Antonio Fernández Leiva University of Malaga

F. Fernández Navarro University of Cordoba

J. Manuel Ferrández Universidad Politecnica de Cartagena

Anibal R. Figueiras-Vidal Universidad Politecnica de Madrid

Oscar Fontenla-Romero University A Coruña

Leonardo Franco University of Malaga

Ana Freire Universidad Publica de Navarra

Ramón Fuentes University of the west of scotland

Colin Fyfe University of Malaga

José Gallardo University of Alicante

Francisco García-Lagos University of Malaga

Maite Garcia-Sebastian University of the Basque Country

Juan Miguel García Universidad Politecnica de Valencia

Patricio García Báez University of La Laguna

Pablo García Sánchez University of Granada

Maribel García-Arenas University of Granada

Esther García-Garaluz University of Malaga

Patrick Garda UPMC (France)

Marcos Gestal University of A Coruña

Peter Gloesekotter University of Applied Sciences Münster

Juan Gomez University of Madrid

Luis González Abril University of Seville

Jesús González Peñalver University of Granada

Juan Gorriz University of Granada
Karl Goser
Bernard Gosselin
Jorge Gosálbez
Manuel Grana
Bertha Guijarro-Berdiñas
Nicolás Guil
Alberto Guillen
Pedro Antonio Gutíerrez
Vanessa Gómez-Verdejo
Andrei Halanay
Alister Hamilton
Francisco Herrera
Álvaro Herrero
Cesar Hervás
Tom Heskes
M. Hidalgo-Herrero
Rob Hierons
Wei-Chiang Hong
Jeanny Hérault
José Jerez
M.D. Jimenez-Lopez
J.L. Jiménez Laredo
Simon Jones
Gonzalo Joya
Vicente Julian
Christian Jutten
Jorma Laaksonen
Alberto Labarga
Vincent Lemaire
Amaury Lendasse
Paulo Lisboa
Ezequiel Lopez
Rafael Luque
Otoniel López
Guillermo López Campos
M.A. López Gordo
Kurosh Madani
Jordi Madrenas
Luís Magdalena
Enric Xavier Martín Rull
Luis Martí
Mario Martín
Bonifacio Martín Del Brio
José Martín Guerrero

University of Dortmund
Université de Mons
Universidad Politecnica de Valencia
University of the Basque Country
University of A Coruña
University of Malaga
University of Granada
University of Cordoba
University of Madrid
Polytechnic University of Bucharest
University of Edinburgh
University of Granada
University of Burgos
University of Cordoba
Radboud University Nijmegen
Universidad Complutense
Brunel University
School of Management, Da Yeh University
GIPSA-Lab, INPG, Grenoble
University of Malaga
University of Rovira i Virgili
University of Granada
University of Loughbourough
University of Malaga
GTI-IA DSIC UPV
GIPSA-lab/DIS - CNRS - Grenoble University
Helsinki University of Technology
University of Granada
Orange Labs
HUT
Liverpool John Moores University
University of Malaga
University of Malaga
Miguel Hernandez University
Institute of Health “Carlos III”
University of Granada
LISSI / Université PARIS XII
Polytechnic University of Catalonia
ECSC Mieres
Polytechnic University of Catalonia
University of Madrid
Polytechnic University of Catalonia
University of Zaragoza
University of Valencia
José Luís Martínez
F.J. Martínez-Estudillo
Francesco Masulli
Montserrat Mateos
Jesús Medina-Moreno
Mercedes Merayo
Juan J. Merelo
Gustavo J. Meschino
Jose M. Molina
Carlos Molinero
Federico Montesini-Pouzols
Augusto Montisci
Antonio Mora
Angel Mora Bonilla
Claudio Moraga
Gin Moreno
Juan M. Moreno
Juan Moreno García
Jose Muñoz
Susana Muñoz Hernández
E. Mérida-Casermeiro
Nadia Nedjah
Pedro Nuñez
Manuel Nuñez
Salomon Oak
Manuel Ojeda-Aciego
Madalina Olteanu
Jozef Oravec
Julio Ortega
A. Ortega De La Puente
Juan Miguel Ortiz
Inma P. De Guzmán
Osvaldo Pacheco
Esteban Palomo
Diego Pardo
Miguel Angel Patricio
Fernando L. Pelayo
Francisco Pelayo
Vincenzo Piuri
Hector Pomares
Alberto Prieto
Mar Prueba
Aleka Psarrou
Francisco Pujol
Carlos G. Puntonet

University of Castilla-La Mancha
ETEA
University of Genova
Pont. University of Salamanca
University of Cadiz
Complutense University of Madrid
University of Granada
National University of Mar del Plata
University of Madrid
Complutense University of Madrid
HUT
University of Cagliari
University of Granada
University of Malaga
European Centre for Soft Computing
University of Castilla la Mancha
Polytechnic University of Catalonia
University of Castilla-La Mancha
University of Malaga
Technical University of Madrid
University of Malaga
State University of Rio de Janeiro
University of Extremadura
UCM
California State Polytechnic University
University of Malaga
SAMOS, Université Paris 1
PF UPJS
University of Granada
Autonomous University of Madrid
University of Malaga
University of Malaga
Universidade de Aveiro
University of Malaga
Polytechnic University of Catalonia
University of de Madrid
University of Castilla-La Mancha
University of Granada
University of Milan
University of Granada
University of Malaga
University of Westminster
University of Alicante
University of Granada
José Manuel Pérez
Pablo Rabanal
Juan Rabuñal
Ander Ramos
Daniel Rivero
Ismael Rodríguez Laguna
A. Rodríguez-Molinero
Juan Antonio Rodríguez
Sara Rodríguez
David Rodríguez Rueda
Ignacio Rojas
Fernando Rojas
Enrique Romero
Samuel Romero García
Ricardo Ron
Eduardo Ros
Fabrice Rossi
Peter Roth
Leonardo Rubio
Fernando Rubio Díez
Ulrich Rueckert
Nicólás Ruiz Reyes
Amparo Ruiz Sepúlveda
Joseph Rynkiewicz
Vladimir Rășvan
Addisson Salazar
Sancho Salcedo-Sanz
Albert Samà
Miguel A. Sanchez
Francisco Sandoval
Jose Santos
J.A. Seoane Fernández
Eduardo Serrano
Olli Simula
Evgeny Skvortsov
Sergio Solinas
Jordi Solé-Casals
Adrian Stoica
José Luis Subirats
Peter Szolgay
Javier Sánchez-Monedero
Ana Maria Tomé
Carme Torras
Claude Touzet
Gracián Triviño

University of Jaen
Complutense University of Madrid
University of A Coruña
University of Tübingen
University of A Coruña
Complutense University of Madrid
Hospital Sant Antoni Abat
University of Malaga
University of Salamanca
University of Tachira
University of Granada
University of Granada
Polytechnic University of Catalonia
University of Granada
University of Malaga
University of Granada
University of Granada
TELECOM ParisTech
Graz University of Technology
University of Granada
Complutense University of Madrid
University of Paderborn
University of Jaen
University of Malaga
University of Paris I
University of Craiova
Universidad Politecnica de Valencia
University of Alcalá
Polytechnic University of Catalonia
Pontifical University of Salamanca
University of Malaga
University of A Coruña
University of A Coruña
Autonomous University of Madrid
Helsinki University of Technology
Simon Fraser University
Università degli studi di Pavia
Universitat de Vic
Polytechnic University of Bucharest
University of Malaga
Pazmany Peter Catholic University
University of Cordoba
Universidade de Aveiro
Polytechnic University of Catalonia
Université de Provence
University of Malaga
Ricardo Téllez Pal Robotics
Raquel Ureña University of Granada
Olga Valenzuela University of Granada
Germano Vallesi Università Politecnica delle Marche - Ancona
Agustín Valverde University of Malaga
Pablo Varona Autonomous University of Madrid
M.A. Veganzones University of the Basque Country
Sergio Velastín Kingston University
Marley Vellasco PUC-Rio
Alfredo Vellido Polytechnic University of Catalonia
Francisco Veredas University of Malaga
Michel Verleysen Université catholique de Louvain
Bart Wyns Ghent University
Vicente Zarzoso University of Nice Sophia Antipolis
Carolina Zato University of Salamanca
Ahmed Zobaa University of Exeter

IWANN 2011 Invited Speakers

Hani Hagras The Computational Intelligence Centre School of Computer Science and Electronic Engineering, University of Essex, UK

Francisco Herrera Head of Research Group SCI2S (Soft Computing and Intelligent Information Systems), Department of Computer Science and Artificial Intelligence, University of Granada, Spain

Tom Heskes Head of Machine Learning Group, Intelligent Systems Institute for Computing and Information Sciences (iCIS) Faculty of Science Radboud University Nijmegen, The Netherlands

IWANN 2011 Special Sessions Organizers

New Applications of Brain–Computer Interfaces

Francisco Pelayo University of Granada
M.A. López Gordo University of Granada
Ricardo Ron University of Malaga
Optimization Algorithms in Graphic Processing Units
Antonio Mora University of Granada
Maribel García-Arenas University of Granada
Pedro Castillo University of Granada

Computing Languages with Bio-inspired Devices
M. D. Jimenez-Lopez University of Rovira i Virgili
A. Ortega De La Puente Autonomous University of Madrid

Computational Intelligence in Multimedia
Adriana Dapena University of A Coruña
Julio Bregáins University of A Coruña
Nicolás Guil University of Malaga

Biologically Plausible Spiking Neural Processing
Eduardo Ros University of Granada
Richard R. Carrillo University of Almeria

Video and Image Processing
Enrique Domínguez University of Malaga
José García University of Alicante

Hybrid Artificial Neural Networks: Models, Algorithms and Data
Cesar Hervás University of Cordoba
Pedro Antonio Gutiérrez University of Cordoba

Advances in Machine Learning for Bioinformatics and Computational Biomedicine
Paulo J.L. Lisboa Liverpool John Moores University
Alfredo Vellido Polytechnic University of Catalonia
Leonardo Franco University of Malaga

Biometric Systems for Human–Machine Interaction
Alexandra Psarrou University of Westminster
Anastassia Angelopoulou University of Westminster
C.M. Travieso-Gonzlez University of Las Palmas de Gran Canaria
Jordi Solé-Casals University of Vic
Data Mining in Biomedicine
Julián Dorado University of A Coruña
Juan R. Rabuñal University of A Coruña
Alejandro Pazos University of A Coruña

Bio-inspired Combinatorial Optimization
Carlos Cotta Porras University of Malaga
Antonio J. Fernández Leiva University of Malaga

Applying Evolutionary Computation and Nature-Inspired Algorithms to Formal Methods
Ismael Rodríguez Complutense University of Madrid

Recent Advances on Fuzzy Logic and Soft Computing Applications
Inma P. Cabrera University of Malaga
Pablo Cordero University of Malaga
Manuel Ojeda-Aciego University of Malaga

New Advances in Theory and Applications of ICA-Based Algorithms
Addison Salazar Polytechnic University of Valencia
Luis Vergara Polytechnic University of Valencia

Biological and Bio-inspired Dynamical Systems
Vladimir Rasvan University of Craiova
Daniela Danciu University of Craiova

Interactive and Cognitive Environments
Andreu Catalá Polytechnic University of Catalonia
Cecilio Angulo Polytechnic University of Catalonia
Preface

We are proud to present the set of final accepted papers for the eleventh edition of the IWANN conference “International Work-Conference on Artificial Neural Networks” held in Torremolinos (Spain) during June 8–10, 2011.

IWANN is a biennial conference that seeks to provide a discussion forum for scientists, engineers, educators and students about the latest ideas and realizations in the foundations, theory, models and applications of hybrid systems inspired by nature (neural networks, fuzzy logic and evolutionary systems) as well as in emerging areas related to the above items. As in previous editions of IWANN, this year’s event also aimed to create a friendly environment that could lead to the establishment of scientific collaborations and exchanges among attendees. Since the first edition in Granada (LNCS 540, 1991), the conference has evolved and matured. The list of topics in the successive Call for Papers has also evolved, resulting in the following list for the present edition:

1. **Mathematical and theoretical methods in computational intelligence**: Mathematics for neural networks; RBF structures; Self-organizing networks and methods; Support vector machines and kernel methods; Fuzzy logic; Evolutionary and genetic algorithms
2. **Neurocomputational formulations**: Single-neuron modelling; Perceptual modelling; System-level neural modelling; Spiking neurons; Models of biological learning
3. **Learning and adaptation**: Adaptive systems; Imitation learning; Reconfigurable systems; Supervised, non-supervised, reinforcement and statistical algorithms
4. **Emulation of cognitive functions**: Decision making; Multi-agent systems; Sensor mesh; Natural language; Pattern recognition; Perceptual and motor functions (visual, auditory, tactile, virtual reality, etc.); Robotics; Planning motor control
5. **Bio-inspired systems and neuro-engineering**: Embedded intelligent systems; Evolvable computing; Evolving hardware; Microelectronics for neural, fuzzy and bioinspired systems; Neural prostheses; Retinomorphic systems; Brain–computer interfaces (BCI) nanosystems; Nanocognitive systems
6. **Hybrid intelligent systems**: Soft computing; Neuro-fuzzy systems; Neuro-evolutionary systems; Neuro-swarm; Hybridization with novel computing paradigms: Quantum computing, DNA computing, membrane computing; Neural dynamic logic and other methods; etc.
7. **Applications**: Image and signal processing; Ambient intelligence; Biomimetic applications; System identification, process control, and manufacturing; Computational biology and bioinformatics; Internet modeling, communication and networking; Intelligent systems in education; Human–robot interaction. Multi-agent systems; Time series analysis and prediction; Data mining and knowledge discovery
At the end of the submission process, we had 202 papers on the above topics. After a careful peer-review and evaluation process (each submission was reviewed by at least 2, and on average 2.4, Program Committee members or additional reviewer), 154 papers were accepted for oral or poster presentation, according to the recommendations of reviewers and the authors’ preferences.

It is important to note that for the sake of consistency and readability of the book, the presented papers are not organized as they were presented in the IWANN 2011 sessions, but classified under 21 chapters and with one chapter on the associated satellite workshop. The organization of the papers is in two volumes and arranged following the topics list included in the call for papers. The first volume (LNCS 6691), entitled *Advances in Computational Intelligence*. *Part I* is divided into ten main parts and includes the contributions on:

1. Mathematical and theoretical methods in computational intelligence
2. Learning and adaptation
3. Bio-inspired systems and neuro-engineering
4. Hybrid intelligent systems
5. Applications of computational intelligence
6. New applications of brain–computer interfaces
7. Optimization algorithms in graphic processing units
8. Computing languages with bio-inspired devices and multi-agent systems
9. Computational intelligence in multimedia processing
10. Biologically plausible spiking neural processing

In the second volume (LNCS 6692), with the same title as the previous volume, we have included the contributions dealing with topics of IWANN and also the contributions to the associated satellite workshop (ISCIF 2011). These contributions are grouped into 11 chapters with one chapter on the satellite workshop:

1. Video and image processing
2. Hybrid artificial neural networks: models, algorithms and data
3. Advances in machine learning for bioinformatics and computational biomedicine
4. Biometric systems for human–machine interaction
5. Data mining in biomedicine
6. Bio-inspired combinatorial optimization
7. Applying evolutionary computation and nature-inspired algorithms to formal methods
8. Recent advances on fuzzy logic and soft computing applications
9. New advances in theory and applications of ICA-based algorithms
10. Biological and bio-inspired dynamical systems
11. Interactive and cognitive environments
12. International Workshop of Intelligent Systems for Context-Based Information Fusion (ISCIF 2011)
During the present edition, the following associated satellite workshops were organized:

1. **4th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2011)**. CISIS aims to offer a meeting opportunity for academic and industry-related researchers belonging to the various vast communities of computational intelligence, information security, and data mining. The corresponding selected papers are published in an independent volume (LNCS 6694).

2. **International Workshop of Intelligent Systems for Context-Based Information Fusion (ISCIF 2011)**. This workshop provides an international forum to present and discuss the latest scientific developments and their effective applications, to assess the impact of the approach, and to facilitate technology transfer. The selected papers are published as a separate chapter in the second volume (LNCS 6692).

3. **Third International Workshop on Ambient-Assisted Living (IWAAL)**. IWAAL promotes the collaboration among researchers in this area, concentrating efforts on the quality of life, safety and health problems of elderly people at home. IWAAL papers are published in LNCS volume 6693.

The 11th edition of IWANN was organized by the Universidad de Malaga, Universidad de Granada and Universitat Politecnica de Catalunya, together with the Spanish Chapter of the IEEE Computational Intelligence Society. We wish to thank to the Spanish Ministerio de Ciencia e Innovacion and the University of Malaga for their support and grants.

We would also like to express our gratitude to the members of the different committees for their support, collaboration and good work. We specially thank the organizers of the associated satellite workshops and special session organizers. Finally, we want to thank Springer, and especially Alfred Hofmann, Anna Kramer and Erika Siebert-Cole, for their continuous support and cooperation.

June 2011

Joan Cabestany
Ignacio Rojas
Gonzalo Joya
Computational Intelligence in Multimedia Processing

A Novel Strategy for Improving the Quality of Embedded Zerotree Wavelet Images Transmitted over Alamouti Coding Systems .. 489
Josmary Labrador, Paula M. Castro, Héctor J. Pérez-Iglesias, and Adriana Dapena

Applying Data Mining Techniques in a Wyner-Ziv to H.264 Video Transcoder .. 497
José Luis Martínez, Alberto Corrales-García, Pedro Cuenca, and Francisco José Quiles

On the Use of Genetic Algorithms to Improve Wavelet Sign Coding Performance .. 505
Ricardo García, Otoniel López, Antonio Martí, and Manuel P. Malumbres

Kernel-Based Object Tracking Using a Simple Fuzzy Color Histogram .. 513
Juan Villalba Espinosa, José María González Linares, Julián Ramos Cózar, and Nicolás Guil Mata

Computational Intelligence in Multimedia Processing .. 520
Nicolás Guil, Julio C. Bregáins, and Adriana Dapena

Biologically Plausible Spiking Neural Processing

Isometric Coding of Spiking Haptic Signals by Peripheral Somatosensory Neurons .. 528
Romain Brasselet, Roland S. Johansson, and Angelo Arleo

Context Separability Mediated by the Granular Layer in a Spiking Cerebellum Model for Robot Control .. 537
Niceto R. Luque, Jesús A. Garrido, Richard R. Carrillo, and Eduardo Ros

Realistic Modeling of Large-Scale Networks: Spatio-temporal Dynamics and Long-Term Synaptic Plasticity in the Cerebellum 547
Egidio D’Angelo and Sergio Solinas

Event and Time Driven Hybrid Simulation of Spiking Neural Networks .. 554
Jesus A. Garrido, Richard R. Carrillo, Niceto R. Luque, and Eduardo Ros

Author Index .. 563
A Novel Strategy for Improving the Quality of Embedded Zerotree Wavelet Images Transmitted over Alamouti Coding Systems

Josmary Labrador, Paula M. Castro, Héctor J. Pérez–Iglesias, and Adriana Dapena
Department of Electronics and Systems, University of A Coruña, Campus de Elviña s/n, 15.071. A Coruña. Spain
{jlabrador, pcastro, hperez, adriana}@udc.es

Abstract. This work deals with the transmission of images, previously coded using the Embedded Zerotree Wavelet (EZW) transform, over wireless systems in which Space-Time Coding (STC) is used. It is shown how the system performance, measured in terms of Peak Signal to Noise Ratio (PSNR), can be improved using bit allocation strategies that take into account the special structure of the EZW bitstream, where the bits firstly allocated are associated to the lowest frequency subbands, and therefore, an error–free transmission of such bits will be crucial to appropriately recover the transmitted image.

Keywords: Artificial neural networks, learning rules, EZW transform, Alamouti coding, PSNR metric, image processing, bit allocation, channel estimation.

1 Introduction

The Embedded Zerotree Wavelet (EZW) transform is a quite simple image compression algorithm based on a tree–ordering of the wavelet coefficients [1,2]. By taking into account that, for wavelet transforms, the highest energy coefficients reside in the lowest frequency subbands placed at the root node, and that a parent-child relationship is defined between wavelet coefficients from frequency subbands spatially related, so that the children correspond to higher frequencies than their respective parents, one or more subtrees will entirely have coefficients whose value is zero or almost zero with high probability. Those subtrees are called zerotrees. Therefore, the bitstream is organized according to the wavelet coefficients ordered from lowest to highest frequency subbands, which allows the decoder to stop the decoding process at any point of the bitstream and still recover the transmitted images but with lower quality. This property is termed as progressive or incremental decoding.

This paper focuses on the transmission of EZW-coded images over wireless systems making use of the popular Orthogonal Space-Time Block Code (OSTBC) scheme proposed by Alamouti [3], which has been incorporated to the
IEEE 802.11 and IEEE 802.16 standards, for example. Coherent detection using Alamouti–coded systems demands a unitary channel matrix, which is commonly acquired from transmitted training symbols (pilots) by means of supervised algorithms \[4,5\]. In order to increase the system throughput, there exists a great interest about the development of algorithms to directly estimate the channel from the observations without using pilots. This type of algorithms are termed as unsupervised or blind \[6\].

Principal Component Analysis (PCA) was developed in 1901 by Karl Pearson and it is one of the most important paradigms in *Artificial Neural Networks* (ANN) since it is connected with Hebbian-type learning rules \[7\]. Nowadays, PCA is mostly used as a tool for data analysis and for predictive modeling. Shahbazpanahi et al. in \[8\] have shown that the channel matrix of Alamouti coding systems can be estimated using PCA although it requires different energies for signal transmission. This unbalanced energy implies a degradation in terms of *Bit Error Rate* (BER) for the signal transmitted with lower energy. In fact, for EZW–coded images it will be shown how *Peak Signal to Noise Ratio* (PSNR) can be considerably improved when the bits associated to the lowest frequency subbands are sent using higher energy than that assigned for the bits corresponding to higher subbands. However, this bit allocation strategy penalizes the EZW property for incremental decoding and, for this reason, it is also proposed in this work a simple decision criterion to decide when that strategy must be used or not.

The work is structured as follows. The channel model is shown in Section 2 where the utilization of PCA for channel estimation is also described. Section 3 shows three different strategies to convert the EZW bitstream to the signals transmitted through the antennas, and Section 4 compares those strategies by performing several computer simulations. Finally, Section 5 presents the main work conclusions.

2 Alamouti Coding Systems

We define the sources \(s_1\) and \(s_2\) as independent equiprobable discrete random variables with values from a finite set of symbols belonging to a real or complex modulation (PAM, PSK, QAM...). In a \(2 \times 1\) *Multiple–Input/Single–Output* (MISO) case, the vector \(x = [x_1 \ x_2]^T\) of received signals (so–called observations) can be written as \(x = Hs + v\), where \(s = [s_1 \ s_2]^T\) is the source vector, \(v = [v_1 \ v_2]^T\) is the *Additive White Gaussian Noise* (AWGN) vector, and the \(2 \times 2\) channel matrix has the form

\[
H = \begin{bmatrix}
h_1 & h_2 \\
h_2^* & -h_1^*
\end{bmatrix}.
\]

(1)

Note that this matrix is orthogonal, i.e. \(H^H H = HH^H = I_2 \|h\|_2^2\), where \(\|h\|_2^2 = |h_1|^2 + |h_2|^2\) and thus, the sources can be recovered applying \(\hat{s} = H^H x\).

In recent years, several unsupervised methods to estimate the channel matrix (and to recover the sources) have been developed assuming that both sources
and channel matrices are completely unknown at the receiver side (see, for instance, \cite{9} and references therein). PCA constitutes an interesting unsupervised method to estimate the channel matrix since it implies to perform a reduced number of operations. By considering the covariance matrix C_x obtained from the observations, i.e. $C_x = E[xx^H]$, PCA computes an orthogonal basis U, so that a new set of orthogonal signals, given by $z = U^H x$, can be obtained \cite{7}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{SER performance of general SOS algorithm for randomly generated symbols}
\end{figure}

For the scenario of Alamouti coding systems, since H is unitary, the matrix U is simply a normalized version of the channel matrix H. It has been proved in \cite{8} that the identification of the channel matrix is possible only when the sources have different energies, i.e. when the source s_1 is transmitted with an energy given by $E[|s_1(n)|^2] = 2/(1 + \gamma^2)$, while s_2 is sent with the energy $E[|s_2(n)|^2] = 2\gamma^2/(1 + \gamma^2)$, where γ is the parameter of energy unbalance.

Many methods can be applied to compute the PCA decomposition. For instance, Via et al. in \cite{10} have proposed an adaptive learning procedure, while Pérez et al. in \cite{9} have presented a block algorithm for that purpose. In both cases, the matrix C_x is estimated by sampling averaging of the N_B symbols received per frame.

In order to illustrate the degradation associated to the source energy unbalance, we consider a scenario where blocks of $N_B = 1000$ symbols are generated from an equiprobable distribution. These symbols are modulated using 4-QAM and transmitted through block fading Rayleigh channels. We use the PCA implementation presented in \cite{9} referred to as general Sum-Of-Square (SOS) reconstruction, where the aforementioned unbalancing parameter, γ, is used and whose value is set up to $\gamma^2 = 0.64$, i.e. $\gamma = 0.8$. Figure 1 plots the Symbol Error Rate (SER) in terms of Signal Noise Ratio (SNR) for each source, s_1 and s_2, and the corresponding mean SER value. As a reference, it is also depicted SER under
Perfect Channel Side Information (Perfect CSI) assumptions. Note that Perfect CSI corresponds to the mean SER obtained for the two sources (s_1 and s_2) when CSI is perfectly known at the receiver side. By comparing the perfect CSI curve to those obtained using PCA, it can be seen from the figure that the source with highest energy (s_1) exhibits lower SER, while the source with smaller one (s_2) suffers from a loss in terms of SER with respect to perfect CSI scenario.

3 Bit Allocation Strategies

The results above reported show that the unbalanced energy is an important drawback for the use of PCA because it produces a SER degradation for one of the sources. In this section, we show that this degradation can be compensated with an adequate bit allocation taking into account the bit organization into the stream. The common strategy to convert a bitstream to a modulated signal (like, for example, an M-QAM signal), consists of sequentially processing that bitstream by taking groups of $b = \log_2(M)$ bits, which are mapped to their corresponding modulated symbol. The modulated symbols are subsequently divided into two sources (remember that a 2×1 Alamouti coded system is implemented): odd symbols, which are sent by the source s_1, and even symbols, which are sent by s_2. For EZW, such bit allocation implies that bits associated to any frequency subband are transmitted by both sources and, as a consequence, the degradation caused by unbalanced energy affects to all the subbands. This bit allocation is termed as Approach 1 in the following.

On the other hand, as a result of the structure observed for the EZW bitstream, we propose a novel bit allocation strategy (termed as Approach 2 in this work), where the bitstream is divided into two parts. The first part (corresponding to the lower subbands) is transmitted by s_1, while the second part (corresponding to higher subbands and to the so-called refinement bits) by s_2. This method permits that the energy degradation does not affect to the lower subbands but note, however, that it keeps from the incremental decoding of EZW. For this reason, it is desirable to use this approach only when the resulting quality of the recovered image is considerably better than that obtained applying Approach 1.

The immense majority of current wireless communication standards make use of feedback channels (usually limited in terms of throughput) between both sides of the link to periodically send channel state information from the receiver to the transmitter. For example, Worldwide Interoperability for Microwave Access (WiMAX) standard uses this channel to send an index for selecting the most adequate code according to channel conditions. In this work, we propose to use this feedback channel to indicate to the transmitter which bit allocation strategy must be used in order to obtain an adequate PSNR.

Since it is not possible to compute the PSNR at the receiver–end for a given image, it is also proposed to use a set of training images to get the estimated PSNR according to visual image quality as a function of SNR. Then, this information is stored at the receiver. Before the transmission of each new image, the
receiver estimates the SNR and decides the bit allocation approach with higher estimated PSNR for a given SNR. An alternative way of interpreting this rule consists of defining the SNR threshold, denoted by SNR_t, which marks out the working regions for each approach. In other words, this approach, termed as Hybrid Approach, can be described by the following decision rule

\[
\text{estimated SNR} \geq \text{SNR}_t \rightarrow \text{Use Approach 1} \\
\text{estimated SNR} < \text{SNR}_t \rightarrow \text{Use Approach 2},
\]

whose result is sent to the transmitter through the feedback channel. The open issue is how to find that SNR threshold, SNR_t, which defines the border between the two working regions. In the next section, we will show a method based on the visual quality of the recovered images.

4 Computer Simulations

In order to compare the proposed bit allocation strategies, we consider a computer scenario where the bitstream of EZW-coded images is modulated using 4-QAM. The symbols are transmitted in blocks of size N_B = 1000 using Alamouti coding. In order to guarantee that the channel matrix can be estimated using PCA, the transmitter unbalances the source energy by means of a parameter \(\gamma^2 = 0.64 \). Thus, PCA is used to acquire the channel matrix estimate per received frame. Note that the covariance matrix obtained from the observations is computed using all the frame symbols, i.e. N_B symbols.

For the training step, the four images plotted in Figure 2 have been coded using EZW.\(^1\) Figure 3 plots the PSNR in terms of SNR obtained by averaging

\(^1\) The original images are constituted by 256 × 256 pixels with 256 gray levels.
the results for 10 Rayleigh channels randomly generated. It can be seen from this figure that the Approach 2 provides the best PSNR for low and medium SNR values since bits associated to lower frequency subbands are sent by means of the source having highest energy. With the goal of establishing the threshold parameter SNR\textsubscript{t} for the decision rule described in Equation (2), the recovered images corresponding to different SNR values, specifically 14, 17, and 20 dB for 10 channel realizations, have been empirically observed. A test oriented to decide which approach provides the best quality percentage or ratio taking into account all the set of training images is applied. Thus, Figure 3 also shows the results obtained from this visual test, which allows us to conclude that

- Firstly, for an SNR value of 14 dB, the improvement achieved with Approach 2 compared to Approach 1 is substantial. Therefore, it is apparent that Approach 2 is the best choice in such a case leading to better quality reconstruction.

- Secondly, for an SNR value of 17 dB, the improvement achieved with Approach 2 compared to Approach 1 is not as significant. By considering the results obtained with Approach 1 and that both approaches exhibit exactly the same performance for about a ratio of 20 to 100 (this scenario is labeled in the figure as \textit{Same performance}), Approach 1 can be decided as a more adequate choice than Approach 2 if progressive decoding is desired.

- Finally, for an SNR value of 20 dB, Approach 1 is clearly the best choice, since it is only outperformed by Approach 2 less than 20\% of cases.

As a result, it can be established a threshold parameter of SNR equal to 17 dB.

Figure 4 shows a comparison in terms of PSNR versus SNR between the three bit allocation strategies studied in this work only considering one of the test images depicted in Figure 2 and 10 channel realizations. Figure 5 illustrates
5 Conclusions and Future Work

A lot of algorithms based on wavelets for image compressing, like EZW, produce bitstreams by ordering the subbands from lowest to highest, which allows to achieve different image qualities after the progressive decoder. This means that the first bits of the EZW sequence are “more important” than the following bits. In this work, we have used this property to improve the performance of the EZW images transmitted over wireless systems where Alamouti space-time block coding is used. We have focused on the utilization of PCA to acquire the channel
matrix estimate avoiding the use of pilot symbols. As a result, three proposed bit allocation strategies combined with a decision rule based on an empirical SNR threshold parameter allow us to improve the quality of the reconstructed images after their transmission affected by fluctuating wireless channel conditions.

Future work to be developed by the authors is focused on studying different bit allocation strategies like, for instance, the sending of the refinement bits corresponding to LL subband through the channel with largest energy. Since PSNR criterion above explained is empirically obtained, other assessment metrics must be analyzed, specially those based on Human Visual System, as for example the Visual Information Fidelity measure. Additionally, this work could be extended to the standard of image processing JPEG2000, thus avoiding some of the drawbacks inherent to EZW.

Acknowledgments. This work was supported by Xunta de Galicia (grant numbers 10TIC105003PR and 09TIC008105PR) and Ministerio de Ciencia e Innovación of Spain (grant numbers TEC2010-19545-C04-01 and CSD2008-00010).

References