Consensus in Correlated Random Wireless Sensor Networks
Silvana Silva Pereira and Alba Pagès-Zamora

Abstract—This contribution studies the convergence of consensus algorithms in random wireless sensor networks with spatially correlated links. Aiming at reducing the convergence time, we adopt an optimization criterion based on the minimization of the spectral radius of a matrix for which we derive closed-form expressions for both directed and undirected topologies. We show that the minimization of the spectral radius assuming constant link weights is a convex optimization problem. The expressions derived by known protocols found in literature.

Index Terms—Consensus algorithm, directed topology, probabilistic convergence, random links, spatial correlation, undirected topology, wireless sensor networks.

I. INTRODUCTION

The study of consensus in wireless sensor networks (WSNs) has attracted increased attention in recent years due to a wide range of applications in different fields. In presence of random communication links, the convergence of consensus algorithms is studied in probabilistic terms. Most contributions address the analysis considering statistically independent links existing with a given probability. Related work is found in [1] where convergence in probability is shown using notions of stochastic stability for undirected Erdős-Rényi networks, i.e., bidirectional links with equal probability, and in [2] where the convergence rate is characterized in terms of the eigenvalues of a Lyapunov-like matrix recursion. Assuming different probabilities of connection, [3] related mean square (m.s.) convergence to the second smallest eigenvalue of the average Laplacian matrix and derives bounds on the convergence rate. Regarding directed random networks, i.e., unidirectional links, and nonnegative stochastic weight matrices, [4] shows almost sure (a.s.) convergence and [5] derives closed-form expressions for the mean and the variance of the consensus value. Admitting weight matrices with negative entries, [6] shows m.s. convergence for directed Erdős-Rényi networks and derives an upper bound for the m.s. error (MSE) for the case of links with different probabilities. Moreover, [7] studies a.s. convergence in continuous systems whereas [8] defines asymptotic m.s. and per-step m.s. convergence factors to characterize the convergence speed of the algorithm.

Communication links may be however spatially correlated not only due to an intrinsic correlation of the channels between pairs of nodes, but also to the communication protocol. An example is the random gossip algorithm, a particular case of consensus with spatially correlated links where a single bidirectional link between two neighboring nodes is established at each iteration [9]. Relevant contributions can be found in [10] which considers the MSE convergence rate as an optimization criterion to assign the weights in undirected networks. For directed networks, [11] derives closed-form expressions for the asymptotic convergence factor assuming fixed out-degree networks. Furthermore, [12] studies the asymptotic convergence rate of randomized protocols and [13] derives a sufficient condition for a.s. convergence of the broadcast gossip algorithm as a particular case of the consensus algorithm in random directed topologies.

This contribution studies the convergence of consensus algorithms in WSNs with both directed and undirected topologies and assuming spatially correlated random links. Whereas [12] and [13] focus specifically on gossip, we consider the more general model in [14], not necessarily restricted to nonnegative symmetric weight matrices. As we will see, the convergence of the consensus algorithm under these connectivity conditions is related to the spectral radius of a positive semidefinite matrix for which we derive a closed-form expression for constant link weights. We consider the minimization of this spectral radius as the optimization criterion to reduce the convergence time of the algorithm and show that the optimum link weight can be obtained as the solution of a convex optimization problem.

The correspondence is organized as follows. Section II summarizes basic concepts of random graphs whereas in Section III we describe the consensus algorithm in random networks and evaluate the convergence conditions of an upper bound. In Section IV we derive closed-form expressions useful to minimize the convergence time of the upper bound and show convexity of the optimization problem. These expressions are further validated by deriving theoretical results of known existing protocols in Section V. Simulation results and conclusions are included in Sections VI and VII respectively.

II. PRELIMINARIES

The information flow among the nodes of an undirected network with random topology is described by an undirected (directed) graph $G(k) = (V, E(k))$, where $V$ is the constant set of vertices or nodes and $E(k)$ is the set of edges or links $e_{ij}$ at time $k$ for all $\{i, j\} \in \{1, \ldots, N\}$, such that the information flows from node $j$ to node $i$ [15]. The links exist with a given probability, i.e., $e_{ij} \in E(k)$ with probability $p_{ij} \leq 1$. In this correspondence the probabilities are assumed symmetric, i.e., $p_{ij} = p_{ji}$ for all $\{i, j\}$. Further, we consider no edges from node $j$ to itself, i.e., $p_{jj} = 0$. The set of neighbors of node $i$ at time $k$ is denoted $N_i(k) = \{j \in V : e_{ij} \in E(k)\}$.

A (directed) path is an ordered sequence of vertices such that from each vertex there is an edge to the next vertex in the sequence. A (directed) graph is (strongly) connected if any node can be reached from any other node of the graph by a (directed) path. Let $P = P_{N \times N}$ denote the symmetric connection probability matrix with $[P_{ij}]_{ij} = p_{ij}$. The adjacency matrix $A(k) \in R^{N \times N}$ is random and symmetric (nonsymmetric) with temporally independent entries given by $[A(k)]_{ij} = 1$ with probability $p_{ij}$, $[A(k)]_{ij} = 0$ with probability $1 - p_{ij}$, and expected value matrix defined as $E[A(k)] = \hat{A}$ satisfying $\hat{A} = P$. The degree matrix $D(k) \in R^{N \times N}$ is diagonal with entries $[D(k)]_{ii} = \sum_{j \neq i} [A(k)]_{ij}$, and $L(k) = D(k) - A(k)$ is the instantaneous Laplacian matrix. By construction, the smallest eigenvalue of $L(k)$ in magnitude is $\lambda_1(L(k)) = 0$ with associated right eigenvector $1 \in R^{N \times 1}$, an all-ones vector of length $N$. If $G(k)$ is (strongly) connected, $\lambda_1(L(k))$ has algebraic multiplicity one and $L(k)$ is irreducible. Let $S^+$ and $S^-$ denote the sets of symmetric, positive semidefinite, and negative semidefinite matrices respectively. The expected Laplacian $\hat{L} = \hat{D} - \hat{P}$ is symmetric by construction and assumed irreducible for both the directed and undirected case. $\hat{L} \in S^+$ and could be seen as the Laplacian of an undirected connected graph $\hat{G}$, the expected graph of $G(k)$. The spatial correlation among pairs of links $e_{ij}$ and $e_{qr}$ for nodes $i, j, q$, and $r$ is organized in the matrix $C \in R^{N^2 \times N^2}$, defined as follows

$$C_{ijqr} = \begin{cases} I_{[0,i,j,q]} - p_{ij}p_{qr} & s \neq t \\ 0 & \text{for } \begin{cases} s = i + (j - 1)N \\ t = q + (r - 1)N \end{cases} \end{cases}$$
with $a_{ij} = [A(k)]_{ij}$, where the time indexing is omitted since correlation is assumed time invariant.

III. CONSENSUS IN RANDOM NETWORKS

Consider a WSN composed of $N$ nodes indexed with $i \in \{1, \cdots, N\}$ and let $x(k) \in \mathbb{R}^{N} \times N$ denote the vector of all states at time $k$, initialized at time $k = 0$ with the values of the measurements. The evolution of $x(k)$ can be written in matrix form as follows:

$$x(k+1) = W(k)x(k), \quad \forall k > 0$$

(2)

where $W(k) \in \mathbb{R}^{N \times N}$ is the weight matrix with a nonzero $\{ij\}^{th}$ entry at time $k$ if node $i$ receives information from node $j$. The matrices $\{W(k)\}, \forall k \geq 0$ are i.i.d. and have by construction at least one eigenvalue equal to 1 with associated right eigenvector $1$. For directed topologies $W(k)$ satisfies for all $k$: i) $W(k)1 = 1$, ii.a) $1^{T}W(k) \neq 1^{T}$ and iii) $W1 = 1, 1^{T}W = 1^{T}$, whereas for undirected topologies $W(k)$ satisfies for all $k$: i); ii.b) $1^{T}W(k) = 1^{T}$ and iii). A right eigenvector $1$ in i) implies that after reaching a consensus the network will remain in consensus, and a left eigenvector $1$ in ii.b) implies that the average of the state vector is preserved from iteration to iteration. In the following section we present a sufficient condition for a.s. convergence in random topologies.

A. Sufficient Condition for a.s. Convergence

Following the line of previous contributions, e.g., [9], [12], [13], we consider the distance to the current average, i.e., the vector of deviations at time $k$ given by

$$d(k) = (I - J)x(k)$$

(3)

where $I$ denotes the $N \times N$ identity matrix and $J = \frac{1}{N}1_{N}$ is a normalized all-ones matrix. The deviation vector $d(k)$ specifies how far the nodes are at consensus at time $k$. The convergence of $x(k)$ in (2) to a consensus vector $c1$ is related to the convergence of the norm of $d(k)$ in (3) to zero, since

$$\Pr \left\{ \lim_{k \to \infty} x(k) = c1 \right\} = \Pr \left\{ \lim_{k \to \infty} \|d(k)\|_{2} = 0 \right\}$$

(4)

where $\| \cdot \|$ denotes the 2-norm. Note that the calculation of $d(k)$ is independent of the consensus value and is easier to analyze than the deviation w.r.t. the average consensus vector given by $X_{ave} = Jx(0)$. Using property i) of $W(k)$ we have

$$d(k+1) = (I - J)W(k)d(k).$$

Further, the expected norm of $d(k+1)$ given $d(k)$ is

$$E[\|d(k+1)\|_{2}^{2}] = d^{T}(k)Wd(k) \leq \lambda_{1}(W)\|d(k)\|_{2}^{2}$$

where

$$W = E\left[ W(k)^{T}(I - J)W(k) \right]$$

(5)

and we have used that $(I - J)$ is symmetric and idempotent. Repeatedly conditioning and replacing iteratively for $d(k)$ we obtain [9]

$$E\left[ \|d(k)\|_{2}^{2} \right] \leq \lambda_{1}^{k}(W)\|d(0)\|_{2}^{2}.$$  

(6)

Remark that in the undirected case, $E[\|d(k)\|_{2}^{2}]$ coincides with the MSE of the state, defined as $\text{MSE} = E[\|x(k) - x_{\text{ave}}\|_{2}^{2}]$. The minimization of $\lambda_{1}(W)$ in (6) is the optimization criterion chosen to reduce the average convergence time of the algorithm.

Lemma 1: The consensus algorithm in (2) with weight matrices satisfying i) and iii) converges almost surely to a consensus value if

$$\lambda_{1}(W) < 1$$

(7)

where $W$ is the matrix defined in (5) and $\lambda_{1}(\cdot)$ denotes its largest eigenvalue.

Proof: See [8] and [13].

IV. REDUCING THE CONVERGENCE TIME IN CORRELATED RANDOM NETWORKS

We consider the problem of reducing the convergence time of the consensus algorithm in (2) assuming constant link weights $\epsilon$ such that

$$W(k) = I - \epsilon L(k), \quad \forall k \geq 0$$

(8)

where $L(k)$ is the random Laplacian. Recall that if the instantaneous $G(k)$ is strongly connected, $L(k)$ is irreducible and so is $W(k)$. However, the network may be disconnected for all $k$ but the nodes can still reach a consensus provided only that $L(k)$ is irreducible [1], [3], [4]. Furthermore, to achieve the average consensus $W(k)$ must satisfy ii.b), or choose a value of $\epsilon$ close to zero at the cost of slowing down the convergence speed of the algorithm. Since we focus on minimizing the upper bound in (6), we search for the value of $\epsilon$ that minimizes $\lambda_{1}(W)$. Therefore, we start replacing (8) in (5) such that

$$W = E\left[ L(k)^{T}(I - J)L(k) \right] \epsilon^{2} = 2\epsilon \text{e} + I - J.$$  

(9)

In the following theorems we provide closed-form expressions for $W$ in (9) for random networks with correlated communication links, where the weight matrices are assumed symmetric and irreducible in expectation, i.e., $\hat{W}$ satisfies condition iii) and $\lambda_{1}(\hat{W}) \geq 1$ with algebraic multiplicity one. We consider first the case of directed topologies.

Theorem 1: Consider the consensus algorithm in (2) with $N$ nodes and spatially correlated random links, $W(k)$ defined in (8) and satisfying i), ii.a) and iii). The matrix $W$ in (9) has a closed-form expression given by

$$W = \left( \frac{\epsilon^{2} + 2(N - 1)}{N} \right) (L - \bar{L}) + R$$

(10)

where

$$\bar{L} = D - P \odot P$$  

(11)

In general, necessary and sufficient conditions for stochastic stability can be derived using the results in [17] and [18].

\[1\]
Proof: We see that the composition \( f = h \circ G \) is convex, and we do so in three steps: a) show convexity of \( G \), b) show matrix monotonicity of \( h \) and c) show convexity of the composition \( f = h \circ G \).

a) To show convexity of \( G(e) \) we start showing that \( \Gamma \in \mathbb{S}^+ \), for any nonzero \( \{v \in \mathbb{R}^{N \times 1} | ||v|| = 1 \} \) we have

\[
{\bf v}^T \Gamma \left( {\bf L}^T(k) (I - J) {\bf L}(k) \right) {\bf v} = \mathbb{E} \left[ {\bf v}^T \left( {\bf L}^T(k) (I - J) {\bf L}(k) \right) {\bf v} \right] \geq 0.
\]

Further, observe that for all \( x,y \in \text{dom} G \) we have

\[
\Gamma \left( \theta x + (1 - \theta) y \right)^2 \leq \Gamma \left( \theta x^2 + (1 - \theta) y^2 \right)
\]

where \( \mathbf{A} \preceq \mathbf{B} \) means that \( \mathbf{B} - \mathbf{A} \in \mathbb{S}^+ \). Adding \( 2\Delta \Gamma (\theta x + (1 - \theta) y) + \Theta \) on both sides yields

\[
\Gamma \left( \theta x + (1 - \theta) y \right)^2 \preceq \Gamma \left( \theta x^2 + (1 - \theta) y^2 \right) + \Theta \left( \theta 2 \Delta x + (1 - \theta) 2 \Delta y \right)
\]

b) Next, analyze the function \( h \). This function is matrix convex [19], and we will show that it is also matrix monotone. A function \( h : \mathbb{R}^{N \times N} \to \mathbb{R} \) is matrix monotone w.r.t. the set \( \mathbb{S} \) if for any pair \( \mathbf{X}, \mathbf{Y} \in \mathbb{S} \), \( \mathbf{X} \preceq \mathbf{Y} \) yields \( h(\mathbf{X}) \leq h(\mathbf{Y}) \). Since the maximum eigenvalue of \( \mathbf{X} \) can be seen as the point-wise supremum of a family of linear functions of \( \mathbf{X} \), we have \( \lambda_1(\mathbf{X}) = \sup \{ \mathbf{u}^T \mathbf{X} \mathbf{u} | \mathbf{u} \in \mathbb{S} \} \).

c) Combining the convexity of \( G \) from a) and the matrix monotonicity of \( h \) from b) yields

\[
h(G(\theta x + (1 - \theta) y)) \leq h(\theta G(x) + (1 - \theta) G(y))
\]

and, recalling the matrix convexity of \( h \), we have

\[
h(G(x) + (1 - \theta) G(y)) \leq h(G(x)) + (1 - \theta) h(G(y))
\]

Combining the left-hand side of (19) and the right-hand side of (20) we obtain

\[
f(\theta x + (1 - \theta) y) \leq \theta f(x) + (1 - \theta) f(y)
\]

which completes the proof.

Theorem 3 shows that the function \( f(e) \) is convex. The next step consists in showing that the dynamic range of \( e \) for which (7) is satisfied, exists.

B. Existence of Dynamic Range of \( e \)

Although \( \text{dom} f(e) = \mathbb{R}^+ \), the value of \( e \) must be restricted to ensure the convergence of \( G(k) \) in (2). Using (18), \( f(e) \) can be rewritten as follows:

\[
f(e) = \sup \left\{ u^T \Delta u + 2 \delta u^T \delta e + u^T \Theta u \right\}
\]

\[
= \sup \left\{ \gamma e^2 + 2 \delta e + \Theta \right\}
\]

where \( \gamma = u^T \Delta u \), \( \delta = u^T \delta u \), and \( \Theta = u^T \Theta u \). Observe that \( \Theta \) has eigenvalues 0 with multiplicity one and 1 with multiplicity \( N-1 \). Thus,
for \( \epsilon = 0 \) we have \( \lambda_i(YY^*) = \lambda_i(\Theta) \) for all \( i \) with \( \lambda_i(YY^*) = 1 \). For \( \epsilon \sim 0 \), the quadratic term in (21) is negligible and \( \lambda_i(YY^*) \) can be approximated as \( \epsilon \sim 0 \approx \epsilon \), which is the same for any unitary vector \( u \). We have \( \theta \leq 1 \) and \( \delta \leq 0 \). Note that \( \delta = 0 \) if and only if \( u = 1 \) and note also that \( 1 \) is an eigenvector associated with the eigenvalue \( \epsilon \) of \( \Theta \). Therefore, there is no \( u \) such that \( \delta = 0 \) and \( \theta = 1 \) at the same time, showing that the approximation is always below 1. However, as \( \epsilon \to \infty \), the quadratic term in (21) becomes predominant and \( \lambda_i(YY^*) \to \infty \). Combining these results with the fact that \( f(\epsilon) \) is convex, we conclude that there exists an interval of positive values of \( \epsilon \) for which (7) holds, ensuring therefore (4). Theorem 3 shows that the optimum \( \epsilon^* \) minimizing \( \lambda_i(YY^*) \) is the solution of a convex optimization problem. This value can be found using the subgradient algorithm [9], [10].

V. PARTICULARIZATION TO EXISTING PROTOCOLS

The expressions in (10) and (15) are particularized for known protocols whose parameters have a closed-form expression (proofs can be found in [20]). This is useful not only to further validate the main results of this contribution, but also to gain insight into the impact of the spatial correlation on the convergence time.

Directed Topologies With Correlated Links: In the broadcast gossip algorithm, at each iteration a node is randomly chosen with probability \( p = \frac{1}{N} \) to transmit its state to the nodes within its connectivity range. The rest remain silent forcing the following correlation among links:

\[
C_{ij} = \begin{cases} 
0, & j = r \text{ and } i = q \\
p(1 - p)^s, & \text{if } j = r, \text{ and } i \neq q \in \mathcal{N}_r \\
p^2, & \text{if } j \neq r, \text{ and } i \neq q \in \mathcal{N}_r \text{ and } q \in \mathcal{N}_r \\
0, & \text{otherwise}
\end{cases}
\]

(22)

where for simplicity \( C_{ij} \) denotes the entry \( C_{s},t \) as defined in (1). Adopting the notation in [13], we let \( A, D \) and \( L \) denote the adjacency, the degree and the Laplacian matrix of the fixed graph, and \( \epsilon = 1 - \gamma \) where \( \gamma \) is the mixing parameter. Then, we have \( \mathbf{L} = \mathbf{pL} \) and \( \mathbf{A} = p \mathbf{A} \). A closed-form expression for \( R \) in (13) can be found by computing the combined covariance sum in (23), (24), (25), and (26). Using the weights given in (22), after a series of computations [20], we obtain

\[
R = 2L - L^2 + \frac{1}{N} \left( 2(L - \mathbf{L}) - \mathbf{pL}^2 \right)
\]

and replacing for \( R \) in (10), we obtain

\[
\mathcal{W}_{FG2} = (2L - L^2)\epsilon - 2\epsilon L + I - J
\]

which coincides with the expression for \( \mathcal{W} \) in [13, Lemma 2] after replacing for \( \epsilon \). Summing up, the expressions for the matrix \( \mathcal{W} \) in [13] can be obtained using the general expression in (10), showing that the broadcast gossip algorithm can be treated as a particular case of the consensus algorithm with spatially correlated random links.

Erdős-Rényi Undirected Topologies With Correlated Links: For this example we consider an Erdős-Rényi graph composed of \( N \) nodes connected with probability \( p \), and equal covariance \( (1 - p)v \) among links with \( 0 < v < 1 \). Assuming an all-ones matrix \( \mathbf{1} \in \mathbb{R}^{N \times N} \) and identity matrix \( \mathbf{I} \in \mathbb{R}^{N \times N} \), the matrix in (1) is given by \( \mathbf{C} = (1 - p)v(\mathbf{1} - \mathbf{I} - \mathbf{T}) \) with \( \mathbf{T}_{st} = 1 \) for either \( s = i \) or \( t = j \) and \( \mathbf{T}_{st} = 0 \) otherwise. Since \( \mathbf{P}_{ij} = p \) for all \( i \neq j \) we have \( \mathbf{L} = pN(I - J) \) and \( \mathbf{L} = p^2N(I - J) \). After computing the correlation sums using (16), we have that \( \mathbf{R}' = (N - 2)p(1 - p)v(I - J) \). Therefore, \( \mathbf{L}, \mathbf{L} \) and \( \mathbf{R} \) are diagonalized by the same set of eigenvectors and using (15) we obtain \( \lambda_i(YY^*) = (N + 1 - (1 + p)^2 + 2v(N - 2)v)\mathbf{p}^2 + 2Np \). The optimum \( \epsilon^* \) solving (17) can be computed taking the derivative of \( \lambda_i(YY^*) \) and solving for \( \epsilon \), while the dynamic range is given by \( (0, 2\epsilon^*) \), coinciding with the results in [10]. This example is useful to observe that as the correlation increases, the value of \( \lambda_i(YY^*) \) increases and the convergence time of the upper bound in (6), defined as

\[
\tau = \frac{1}{\log \lambda_{\Theta}(YY^*)}
\]

increases as well. In addition, we observe that adding correlation, the dynamic range of \( \epsilon \) is reduced.

Erdős-Rényi Directed Topologies With Uncorrelated Links: Analogous to the previous case we assume an Erdős-Rényi graph composed of \( N \) nodes connected with probability \( p \), but consider instead the matrix \( YY^* \) in (10) with zero matrix \( \mathbf{R} \). The procedure to derive \( \epsilon^* \) and the dynamic range is similar to the previous one and the results coincide with the expressions derived in [6] minimizing the m.s. convergence rate. Furthermore, we have checked through computer simulations that for links with different probabilities the optimum \( \epsilon^* \) outperforms the choice of \( \epsilon \) that minimizes the upper bound for the MSE in [6], resulting in a faster convergence.

VI. SIMULATION RESULTS

We simulate a very general case to support the analytical results: a random geometric network with different probabilities of connection and different correlation among pairs of links. We consider \( N = 20 \) nodes randomly deployed in a unit square and with fixed position, where two nodes are connected only if the euclidean distance between them is smaller than 0.37. The entries of \( \mathbf{X}(0) \) are modeled as Gaussian random variables (r.v.’s) with mean \( x_m = 20 \) and variance \( \sigma_0^2 = 5 \) and the links are generated as correlated Bernoulli r.v.’s with different probabilities chosen uniformly between [0, 1]. For the spatial correlation we consider the autoregressive model in [21, Sec. 2.2.2–2.4] with \( p = \max \{|P|\} \) and \( \theta = 0.3 \). A total of 10,000 independent realizations were run to obtain \( \mathbb{E}[\|\mathbf{k}^h(x)\|^2] \), where \( \mathbf{P} \) was kept fixed while a new \( \mathbf{L}(k) \) was generated at each iteration. Fig. 1 shows the empirical \( \mathbb{E}[\|\mathbf{k}^h(x)\|^2] \) in log-linear scale as a function of \( k \) for three different values of \( \epsilon \):

1) \( \epsilon = \frac{1}{\sqrt{\mathbb{E}[\|\mathbf{L}\|^2]]}} = 0.0526 \) (dotted line);
2) \( \epsilon_{\text{s-bound}} = 0.1850 \), the value minimizing the MSE upper bound defined in [6] (dashed line);
3) \( \epsilon^* = 0.3367 \) minimizing \( \lambda_i(YY^*) \) (solid line).

Fig. 2 shows the empirical MSE w.r.t the statistical mean of the initial values in log-linear scale averaged over all nodes for the three cases, along with the benchmark value \( \mathbb{E}[\|\mathbf{k}^h(x)\|^2] \). The results depicted in Fig. 1 verify that the choice of the optimum \( \epsilon^* \) reduces the convergence time of the algorithm, whereas the results in Fig. 2 are more useful to evaluate the deviation of the state w.r.t. the statistical mean of the initial measurements caused by asymmetric links.

VII. CONCLUDING REMARKS

The convergence of the consensus algorithm in random WSNs with both directed and undirected topologies and assuming spatially correlated links has been studied, where a useful criterion for reducing the convergence time has been adopted. This criterion is based on the spectral radius of a positive semidefinite matrix for which we derive closed-form expressions for constant link weight matrices, and states a sufficient condition for almost sure convergence. The general expressions provided in the contribution subsume existing protocols found in literature and greatly simplify the derivation of the optimum link weights. The analytical results are further validated with computer simulations of a general case with different probabilities of connection for the links and different correlations among pairs of links. The results obtained for particular cases of links with equal probability of connection.
show that spatial correlation is detrimental to the convergence rate of consensus algorithms in random topologies and reduces the dynamic range of the link weights.

APPENDIX A

PROOF OF THEOREM 1

Recalling that \( \mathbf{L}(k) = \mathbf{D}(k) - \mathbf{A}(k) \), at time \( k \) we have

\[
\mathbb{E} \left[ (\mathbf{L}(k) \mathbf{L}(k)^T)_{mn} \right] \\
= \left( \sum_i a_{mi} \right)^2 + \sum_i a_{im}^2 - \sum_{i \neq m} a_{mi}a_{mj} - \sum_{i \neq m} a_{im}a_{mn} + \sum_i a_{im}a_{in} \\
= \frac{1}{N} \left( \sum_i a_{mi} \right)^2 - \sum_{i \neq m} a_{mi}a_{mj} - \sum_{i \neq m} a_{im}a_{mn} + \sum_i a_{im}a_{in}
\]

where \( a_{mn} = [\mathbf{A}(k)]_{mn} \) and we have considered that \( a_{mn} = 0 \) for all \( m \). For notation clarity, let \( \mathbf{C}_{ij} \) denote the entry \( \mathbf{C}_{st} \) with \( s \) and \( t \) as defined in (1). After some manipulations, taking the expectation of the expressions above, we obtain

\[
\mathbb{E} \left[ (\mathbf{L}(k) \mathbf{L}(k)^T)_{mn} \right] \\
= \sum_i p_{mi} + \sum_{j \neq i} \sum_j p_{mi}p_{mj} + \sum_j p_{jm} + \sum_j \sum_i \mathbf{C}_{mi} \mathbf{C}_{mj}
\]

where we have assumed that \( \mathbf{C}_{ii} = \mathbf{C}_{ij} = \mathbf{C}_{ij} = 0 \) for all \( \{i, j, q, r\} \in \{1, \cdots, N\} \) and considered that \( \mathbf{P} \in \mathcal{S} \) with \( \mathbf{P}_{ii} = 0 \) for all \( i \). Rearranging terms we have

\[
\mathbb{E} \left[ (\mathbf{L}(k) \mathbf{L}(k)^T)_{mn} \right] \\
= \sum_i p_{mi} + \frac{2}{N} \left( \sum_i p_{mi} \right)^2 - \sum_{i \neq m} p_{mi}p_{mj} - \sum_i \sum_j \mathbf{C}_{mi} \mathbf{C}_{mj}
\]

(23)
\[ E \left[ \mathbf{L}(k) \right] \mathbf{J}(k) \right]_{mn} = -2p_{mn} - p_{mn} \left( \sum_{i} p_{ni} + \sum_{i} p_{im} \right) + \sum_{i} p_{im} p_{in} \\
+ 2p_{mn}^2 - \sum_{i} C_{nm}^{mi} - \sum_{i} C_{im}^{mi} - \sum_{i} C_{im}^{mi} \] \\
\frac{1}{N} \left( 2 \sum_{i} p_{mi} - 2 \sum_{i} p_{mi}^2 + \sum_{i} \sum_{j} C_{mj}^{im} \right) \\
\frac{1}{N} \left( 2 \sum_{i} p_{mi} - 2 \sum_{i} p_{mi}^2 + \sum_{i} \sum_{j} C_{mj}^{im} \right) - \sum_{i} C_{mj}^{im} - \sum_{i} C_{mj}^{im} \] \\
\frac{1}{N} \left( -2p_{mn} + 2p_{mn}^2 + \sum_{i} \sum_{j} C_{mj}^{im} + \sum_{i} \sum_{j} C_{mj}^{im} \right) \\
\frac{1}{N} \left( -2p_{mn} + 2p_{mn}^2 + \sum_{i} \sum_{j} C_{mj}^{im} + \sum_{i} \sum_{j} C_{mj}^{im} \right) - \sum_{i} C_{mj}^{im} - \sum_{i} C_{mj}^{im} \\
+ \sum_{i} \sum_{j} C_{mj}^{im} - \sum_{i} \sum_{j} C_{mj}^{im} - \sum_{i} \sum_{j} C_{mj}^{im} \] \\
(24)

where \( \hat{D} \) is the matrix defined in (12), subtracted also in (24) to compensate for the contribution of \( \mathbf{P}^2 \) in the main diagonal. Combining the results from (23), (24), (25) and (26) we obtain

\[ E \left[ \mathbf{L}(k) \right] \mathbf{J}(k) \right] - \mathbf{J} = \left( \hat{D} - \mathbf{P} \right)^2 + \frac{2(N-1)}{N} \times \left( \hat{D} - \mathbf{P} - \hat{D} + \mathbf{P} \right) + \mathbf{R} \] \\
(27)

where the correlation terms are arranged in the matrix \( \mathbf{R} \) as defined in (13). Finally, defining \( \mathbf{L} \) as in (11) and replacing (27) in (9) we obtain the closed-form expression in (10), completing the proof.

**APPENDIX B**

**PROOF OF THEOREM 2**

For the proof of Theorem 2 we can use part of the computations in Appendix A, noting that

\[ W = E \left[ \mathbf{W}(k)^T \mathbf{W}(k) \right] - \mathbf{J}. \] \\
(28)

Replacing the weight matrix model (8) in (28), after some matrix manipulations we obtain

\[ W = E \left[ \mathbf{L}(k)^T \mathbf{L}(k) \right] \epsilon^2 - 2\mathbf{L} \epsilon + \mathbf{I} - \mathbf{J}. \] \\
(29)

Then, combining the expressions in (23) and (24) yields

\[ E \left[ \mathbf{L}(k)^T \mathbf{L}(k) \right] = \left( \hat{D} - \mathbf{P} \right)^2 + 2\left( \hat{D} - \mathbf{P} - \hat{D} + \mathbf{P} \right) + \mathbf{R} \] \\
(30)

where we have arranged the corresponding correlation terms in the matrix \( \mathbf{R} \), as defined in (16). Finally, replacing (30) in (29) we obtain (15), completing the proof.

**ACKNOWLEDGMENT**

The authors would like to thank A. Pastore for his useful comments on convexity.

**REFERENCES**