Cooperative Compressive Power Spectrum Estimation

Dyonisius Dony Arianda*, Daniel Romero†, and Geert Leus∗

*Faculty of EEMCS, Delft University of Technology, The Netherlands
†Dept. of Signal Theory and Communications, University of Vigo, Spain

{d.a.dyonisius, g.j.t.leus}@tudelft.nl and dromero@gts.uvigo.es.

Abstract—We examine power spectrum estimation from wide-sense stationary signals received at different wireless sensors. We organize multiple sensors into several groups, where each group estimates the temporal correlation only at particular lags, which are different from group to group. A fusion centre collects all the correlation estimates from different groups of sensors, and uses them to estimate the power spectrum. This reduces the required sampling rate per sensor. The fusion centre (FC) uses the correlation estimates from different groups of sensors, and uses them to estimate the power spectrum. This reduces the required sampling rate per sensor. We further investigate the conditions required for the system matrix to have full column rank, which allows for a least-squares reconstruction method.

I. INTRODUCTION

The emergence of compressive sampling has renewed the interest in spectral analysis. The work in [1], for instance, focuses on signal reconstruction from sub-Nyquist rate samples produced by a multi-coset sampler. However, even when the sampling rate is less than the Nyquist rate, reconstruction is still possible, even for a non-sparse power spectrum, by exploiting the Toeplitz structure of its correlation matrix [2]. Unlike [2], [3] considers a multiband signal (which is not sparse), but it builds upon the knowledge of the channel state information (CSI). As in [5], our work focuses on cooperative compressive power spectrum estimation from compressive measurements at different sensors, which are different from group to group. A fusion centre collects all the correlation estimates from different groups of sensors, and uses them to estimate the power spectrum. This reduces the required sampling rate per sensor. We further investigate the conditions required for the system matrix to have full column rank, which allows for a least-squares reconstruction method.

II. THEORETICAL MODEL

Consider Z groups of P wireless sensors sensing wide-sense stationary WSS signals. At the (p + 1)-th sensor of the (z + 1)-th group, we collect N Nyquist-rate samples, split them into L blocks of N = N/L consecutive samples, and collect the samples in the (l + 1)-th block as \(x_{z,p}[l] = [x_{z,p}(N), x_{z,p}(N + 1), \ldots, x_{z,p}(N + N - 1)]^T \), with \(l = 0, 1, \ldots, L - 1 \), \(p = 0, 1, \ldots, P - 1 \), \(z = 0, 1, \ldots, Z - 1 \), and \(x_{z,p}[n] \) the (n + 1)-th sample. We collect the (n + 1)-th indices from each block into the set \(\tilde{n} \in \{0, 1, \ldots, \tilde{N} - 1\} \) and label this set as the (n + 1)-th coset, with the coset index of the (n + 1)-th coset given by \(n \). It is hence possible to view the complete set of \(\tilde{N} \) samples as the output of a multi-coset sampler [1] with \(n \). We next introduce notation in each sensor by defining one unique sub-Nyquist sampling pattern for each group. For the (z + 1)-th group, we define an \(M \times N \) selection matrix \(C_z \), whose rows are selected from the rows of the \(N \times N \) identity matrix \(I_N \). The \(M \)-rate compressed version of \(x_{z,p}[l] \) is written as

\[
y_{z,p}[l] = C_z x_{z,p}[l], \quad z = 0, \ldots, Z - 1, \quad p = 0, \ldots, P - 1,
\]

with \(y_{z,p}[l] = [y_{z,p}(0), y_{z,p}(1), \ldots, y_{z,p}(M - 1)]^T \). We assume that all \(\{C_z\}_{l=0}^M \) in (1) have \(M \) rows to simplify the discussion though it is possible for every \(C_z \) to have a different number of rows. By writing \(C_z \) in (1) in terms of its rows, i.e., \(C_z = [c_z^{(0)}, c_z^{(1)}, \ldots, c_z^{(M - 1)}]^T \), with \(c_z^{(m)} = [c_z^{(m)}[0], c_z^{(m)}[1], \ldots, c_z^{(m)}[1 - N]]^T \), we can write

\[
y_{z,p}^{(m)}[l] = \sum_{n=1-N}^0 c_z^{(m)}[n] x_{z,p}[l|N - n],
\]

for \(m = 0, 1, \ldots, M - 1 \). As (2) can be viewed as a filtering operation of a WSS sequence \(x_{z,p}[n] \) by a filter \(c_z^{(m)}[n] \) followed by an \(N \)-fold decimation, \(\{y_{z,p}^{(m)}[l]\}_{m=0}^{M-1} \) forms a set of jointly WSS sequences. We then define the set of indices of the \(M \) selected cosets in (1) (corresponding to the set of indices of the \(M \) rows of \(I_N \) used to form \(C_z \)) as

\[
\mathcal{M}_z = \{n_z^{(0)}, n_z^{(1)}, \ldots, n_z^{(M - 1)}\},
\]

with \(0 \leq n_z^{(0)} < n_z^{(1)} < \cdots < n_z^{(M - 1)} \leq N - 1 \).

We focus on the case where the different sensors observe the same statistics of the received signals, which can be motivated...
by the fact that they are observing the same user signals, that they experience different random fading, and that they use automatic gain control to compensate the difference in the fading variance (path loss and shadowing) in each user band. In this case, we define \(r_x[\hat{n}] = E[x_{z,p}[\hat{n}]x_{z,p}[\hat{n} - \hat{n}]] \), i.e., \(r_x[\hat{n}] \) does not vary with sensor indices \(p \) or group indices \(z \). Note that (4) allows us to write \(c_z(m)[n] \) as \(c_z(m)[n] = \delta[n + n_z(m)] \). As a result, the deterministic cross-correlation between \(c_z(m)[n] \) and \(c_z(m')[n] \), defined as
\[
\rho_{c_z(m,m')}[n] = \sum_{n=1-N}^{N-1} c_z(m')[n]c_z(m)[n], \quad n \in \mathbb{Z},
\]
and the correlations between the measurements at the different cosets \(m \) and \(m' \), i.e., \(\rho_{y_{z}(m,m')}[l] = E[y_{z,p}^s[l]y_{z,p}^r[l'] \mid l'] \), are related to \(r_x[\hat{n}] \) as
\[
\rho_{y_{z}(m,m')}[l] = \sum_{n=-N}^{N-1} r_x(c_z)[n]r_x[N - n] = r_x[1][N + n_z(m) - n_z(m')], \quad (5)
\]

Remark 1: This paper focuses on estimating \(r_x[\hat{n}] \) in (5) at lags \(1 \leq n \leq N - 1 \), from the sample estimates of \(\rho_{y_{z}(m,m')}[l] \) in (5) with \(L \geq 2 \). For this purpose, we can find from (4) that we need to consider only \(\rho_{y_{z}(m,m')}[0] \) for all \(m \) and \(m' \), \(\rho_{y_{z}(m,m')}[1] \) for all \(m < m' \), and \(\rho_{y_{z}(m,m')}[-1] \) for all \(m > m' \).

Considering (4), we write \(\{\rho_{y_{z}(m,m')}[l]\}_{l=-1}^{l=1} \) in (5) as
\[
\rho_{y_{z}(m,m')}[0] = \rho_{c_z(m,m')}[0]r_x[0] + r_x(c_z(m,m'))^T[1]r_x[1],
\]
\[
\rho_{y_{z}(m,m')}[1] = \rho_{c_z(m,m')}[1]r_x[1], \quad m, m' = 0, 1, \ldots, M - 1,
\]
\[
\rho_{y_{z}(m,m')}[-1] = \rho_{c_z(m,m')}[-1]r_x[1], \quad m, m' = 0, 1, \ldots, M - 2,
\]
and with \(r_{c_z}[0] = 1_M \) (as is clear from (4) [4] an \(M \times 1 \) vector having ones in all entries and both \(R_{c_z}[1] \) as well as \(R_{c_z}[-1] \) \(\frac{M(M-1)}{2} \times (N-1) \) matrices. We can then use (5) to write
\[
r_{y_{z}+}[0] = r_{x}[0]r_{x}[0] = 1_Mr_{x}[0], \quad (9a)
\]
\[
r_{y_{z}+}[1] = \rho_{c_z[-1]}[1]r_{x}[1] = R_{c_z}r_{x}[1], \quad (9b)
\]
with \(r_{y_{z}+}[0] = \ldots \rho_{y_{z}(m,m')}[0] \ldots [m, M - 1], \rho_{y_{z}+}[0] = \ldots \rho_{y_{z}(m,m')}[0] \ldots [m', M - 1] \) for \(m = 0, 1, \ldots, M - 2 \), \(m' = 0, 1, \ldots, M - 2 \) and \(m > m' \), and \(\rho_{y_{z}+}[1] = \ldots \rho_{y_{z}(m,m')}[1] \ldots [m, M - 2] \) for \(m = 0, 1, \ldots, M - 2 \) and \(m' > m \).

Let us consider an FC collecting the correlation vectors
\[
r_{y_{z}+}[0] = \rho_{y_{z}(0)}^T[0], r_{y_{z}+}[1] = \rho_{y_{z}(-1)}^T[1]^T
\]
from the \(z + 1 \)-th group of sensors, for \(z = 0, 1, \ldots, Z - 1 \). We collect \(\{r_{y_{z}+}[0]\}_z=0^Z \) into \(r_{y_{z}+}[0] = \rho_{y_{z}+}[0] \), \(r_{y_{z}+}[0] = \ldots \rho_{y_{z}+}[0] \ldots T \), similarly define \(r_{y_{z}+}^T[0] \) and \(r_{y_{z}+}^T[1] \), and use (6) to write
\[
r_{y_{z}+}[0] = r_{c_z}[0]r_{x}[0] = 1_MZr_{x}[0], \quad (11a)
\]
\[
r_{y_{z}+}^T[1] = \begin{bmatrix} \bar{R}_{c_z}-[1] \\ \bar{R}_{c_z}[1] \end{bmatrix}, \quad r_{y_{z}+}^T[1] = R_{c_z}r_{x}[1], \quad (11b)
\]
with \(r_{c_z}[0] = [r_{y_{z}+}^T[0], r_{y_{z}+}^T[0], \ldots r_{y_{z}+}^T[0]T \), and with \(\bar{R}_{c_z}[1] \) and \(\bar{R}_{c_z}[1] \) similarly defined as \(r_{c_z}[0] \). The FC can then use least-squares (LS) to reconstruct \(r_{c_z}[1] \) from \(r_{c_z+}^T[0] \) and \(r_{c_z}[1] \) if the \((M^2 - M) \times (N - 1) \) matrix \(R_{c_z} \) in (11b) has full column rank. Meanwhile, it is clear from (11a) that \(r_{c_z}[0] \) can always be reconstructed using LS and its value is given by the average of the entries of \(r_{y_{z}+}[0] \). Defining \(F_{2N-1} \) as the \((2N - 1) \times (2N - 1) \) discrete Fourier transform matrix, the FC can then compute \(r_{c_z}[1] \) from \(r_{c_z}[1] \) using the Hermitian symmetry of \(r_{c_z}[1] \) and the power spectrum from the reconstructed \(r_{c_z} = [r_{c_z}[0], r_{c_z}[1], r_{c_z}^T[1]]^T \) as
\[
r_{c_z} = F_{2N-1}r_{x}.
\]

Due to the finite sensing time, all the correlations must be approximated from a finite number of samples. Consider the unbiased estimate of \(\rho_{y_{z}(m,m')}[l] \) in (5) given by
\[
\hat{\rho}_{y_{z}(m,m')}[l] = \frac{1}{P(L - |l|)} \sum_{p=0}^{P-1} \sum_{l'=\max(0,l)}^{L-1} y_{z,p}[l']y_{z,p}[l']^* \quad (13)
\]
for \(m, m' = 0, 1, \ldots, M - 1 \). Using (13), we then form the estimate of \(r_{y_{z}+} \) in (10) as
\[
r_{y_{z}+} = [\hat{r}_{y_{z}+}^T[0], \hat{r}_{y_{z}+}^T[0], \hat{r}_{y_{z}+}^T[1]]^T.
\]

Next, we use (14) to form \(r_{y_{z}+}^T[0] \) and \(r_{y_{z}+}^T[0] \), \(r_{y_{z}+}^T[0] \), and similarly also \(r_{y_{z}+}[-1] \) and \(r_{y_{z}+}[-1] \), as the estimates of \(r_{y_{z}+}^T[0] \), \(r_{y_{z}+}[-1] \), and \(r_{y_{z}+}[-1] \), respectively. In this case, we apply LS on \(r_{y_{z}+}[0] \), \(r_{y_{z}+}[0] \), \(r_{y_{z}+}^T[0] \), and \(r_{y_{z}+}[-1] \) in (11). III. CONDITION FOR LEAST-SQUARES RECONSTRUCTION

We now focus on the LS reconstruction of \(r_{c_z}[1] \) in (11b) and first evaluate the full column rank condition of \(R_{c_z} \) for \(Z = 1 \). Note from (9b) and (11b) that \(R_{c_z} = R_{c_z} \) for \(Z = 1 \).
We can find from (4), (7c), (7d), and (8) that each row of \(R_{cz} \) in (9b) has only a single one in one entry and zeros elsewhere. The full column rank condition of \(R_{cz} \) is then ensured if and only if each of its columns has at least a single one. We define \(\Omega(M_z) = \{ (n_z^{m}) - n_z^{(m')} \} \mod N \forall n_z^{(m)}, n_z^{(m')} \in M_z \} \) and review the definition of a circular sparse ruler in (6), which is also known as a cyclic difference set [2].

Definition 1: A length-(N−1) circular sparse ruler is a set \(Q \subset \{0, 1, \ldots, N - 1\} \) such that \(\Omega(Q) = \{0, 1, \ldots, N - 1\} \).

A length-(N−1) circular sparse ruler is a ruler that can measure all integers from 0 to N−1 in a modular fashion despite missing some of its integer marks. Let us consider the following theorem.

Theorem 1: \(R_{cz} \) in (9b) has full column rank if and only if \(M_z \) in (3) is a circular sparse ruler of length \(N - 1 \).

Proof: Assuming \(n_z^{(m)} > n_z^{(m')} \), having a one in the \((n_z^{m}) - n_z^{(m')}\)th entry of \(R_{cz}^{(m,m')} \) in (7c) implies having a one in the \((n_z^{m}) - n_z^{(m')} + N\)th entry of \(R_{cz}^{(m,m')} \) in (7d). It is then clear from (8) that if \(R_{cz} \) in (9b) has at least a single one in the \((n_z^{m}) - n_z^{(m')} \mod N\)th column, it also has at least a single one in the \((n_z^{m}) - n_z^{(m')} \mod N\)th column.

As we need to ensure each column of \(R_{cz} \) to have at least a single one, ensuring \(R_{cz} \) in (9b) to have full column rank is identical to ensuring that \(\Omega(M_z) = \{0, 1, \ldots, N - 1\} \). By considering Definition 1, the proof is concluded. □

The correlation reconstruction with \(Z = 1 \) is equivalent to the work in (2), though (2) does not directly relate the rank condition of the system matrix to a circular sparse ruler. For \(Z > 1 \), observe from (11b) that \(R_{cz} \) in (9b) does not need to have full column rank and thus each of the sets \(\{M_z\}_{z=0}^{Z-1} \) does not have to be a circular sparse ruler. In fact, for \(Z > 1 \), \(R_{cz} \) in (11b) has full column rank if

\[
\bigcup_{z=0}^{Z-1} \Omega(M_z) = \{0, 1, \ldots, N - 1\}. \tag{15}
\]

For completeness, let us consider the following definition.

Definition 2: A length-(N−1) incomplete circular sparse ruler is a set \(Q \subset \{0, 1, \ldots, N - 1\} \) such that \(\Omega(Q) \subset \{0, 1, \ldots, N - 1\} \).

Like a length-(N−1) circular sparse ruler, a length-(N−1) incomplete circular sparse ruler misses some of its integer marks, but it cannot measure all integers from 0 to N−1 in a modular fashion. Using Definition 2, we can view the design of \(\{M_z\}_{z=0}^{Z-1} \) satisfying (15) as having \(Z \) circular rulers, preferably sparse and incomplete to achieve a strong compression, such that, for each \(n \in \{0, 1, \ldots, N - 1\} \), at least one of these \(Z \) incomplete circular sparse rulers can measure the distance \(n \) in a modular fashion. Clearly, there is a tradeoff between \(Z \) and \(M \) under the constraint of (15) since it is not possible to minimize both of them. Here, we aim at minimizing \(Z \) given \(M \), i.e.,

\[
\min_{Z, \{M_z\}_{z=0}^{Z-1}} Z \text{ s.t. (15) and } |M_z| = M, \forall z. \tag{16}
\]

Note that maximizing \(|\Omega(M_z)| \) in (15) for all \(z \) implies minimizing \(Z \). As we have \((n_z^{(m)} - n_z^{(m')}) \mod N \in \Omega(M_z) \) and \((n_z^{(m)} - n_z^{(m')}) \mod N \in \Omega(M_z) \) whenever \(n_z^{(m)}, n_z^{(m')} \in M_z \), we can find that \(|\Omega(M_z)| \leq M(M - 1) + 1 \). Disregarding the self-difference of the coset indices, we can find from (15) that \(Z \) is bounded as \(Z \geq \left\lceil \frac{N - 1}{M(M - 1)} \right\rceil \). We thus aim to have \(|\Omega(M_z)| \) as close as possible to \(M(M - 1) + 1 \) for all \(z \).

Definition 3: A length-(N−1) circular Golomb ruler is a set \(Q \subset \{0, 1, \ldots, N - 1\} \) such that, if \(q, q', q'' \in Q \) with \(q \neq q' \), then \((q - q') \mod N = (q - q') \mod N \) implies \(q = q' \) and \(q'' = \tilde{q} \). We say that \(Q \) has length-(N−1) circular Golomb rulers \(\{Q_z\}_{z=0}^{Z-1} \) are non-overlapping if \(\bigcap_{z=0}^{Z-1} \Omega(Q_z) = \{0\} \).

Definition 3 implies that \(|\Omega(M_z)| = M(M - 1) + 1 \) if and only if \(M_z \) is a circular Golomb ruler. Hence, a way to (approximately) minimize \(Z \) given \(M \) is to search for non-overlapping circular Golomb rulers that cover all or a certain number of the \(N \) integer distances. In the latter case, we continue to search for another circular Golomb or an ordinary incomplete circular sparse ruler with \(M \) marks that covers as many of the remaining uncovered integer distances as possible. This step is repeated until all the \(N \) integer distances are covered. For \(M = 2 \), the lower bound for \(Z \) is \(\left\lceil \frac{N - 1}{2} \right\rceil \), which is reached for \(N \) odd by having \(\frac{N - 1}{2} \) non-overlapping circular Golomb rulers with the \((z + 1)\)-th ruler \(M_z = \{0, z + 1\} \). This bound is also reached for \(N \) even by having \(\frac{N}{2} - 1 \) non-overlapping circular Golomb rulers with \(M_z = \{0, z + 1\} \), plus one incomplete circular sparse ruler \(M_{Z-1} = \{0, \frac{N}{2}\} \) as the last ruler. For \(M = 3 \), the lower bound for \(Z \) is \(\left\lceil \frac{N - 1}{3} \right\rceil \). Table III provides a list of non-overlapping circular Golomb rulers that achieve this bound for integers \(\frac{N - 1}{6} \) and \(43 \leq N \leq 115 \). These non-overlapping circular Golomb rulers are found by first having \(M_z = \{0, z + 1\} \), for all \(z = 0, 1, \ldots, Z - 1 \). The third (last) coset index in \(M_z \), for each \(z \), is then determined by using a greedy search from the remaining coset indices that have not yet been used in \(\{M_z\}_{z=0}^{Z-1} \). We are still investigating if there is always a sampling pattern that reaches the lower bound for \(Z \), for any value of \(N \) and \(M \), and if there is a better algorithm to find this optimal sampling pattern. A set of non-overlapping linear (instead of circular) Golomb rulers called a perfect difference basis system is discussed in (9).

IV. NUMERICAL STUDY

We consider \(N = 103 \) and six user signals whose frequency bands are given in Table I together with the power at each band normalized by frequency. These signals are generated by passing six sets of circular complex zero-mean Gaussian i.i.d. noise signals, with the variances set according to the desired user signal powers, into different digital filters having \(N \) taps where the location of the unit-gain passband of the filter for each realization corresponds to the six different active bands. We assume that the signals are observed by unsynchronized sensors, which means that, at a certain point in time, all sensors generally observe different parts of the user signals. To simplify the experiment, we assume that, at time \(t \), the \((zP + p)\)-th sensor observes the part of the user signals that has previously been observed by the \((zP + p)\)-th sensor at time \(t - 14T \), with \(T \) the Nyquist sampling time. We start from \(M = 3 \) active cosets per sensor and fix \(Z \) at its lower bound, which is \(Z = 17 \) for \(M = 3 \), by having 17 non-overlapping circular Golomb rulers (search for \(N = 103 \) in Table III).
set the white noise power at each sensor to 16 dBm and vary M, P, and L (see Fig. 1). Each user signal received by different sensors is assumed to pass through different wireless channels but the signal from a user received by all sensors is assumed to experience the same path loss and shadowing. Table I indicates the amount of path loss experienced between each user and all sensors, which is assumed to include shadowing. We simulate the Rayleigh fading by generating the channel frequency response based on a zero-mean complex Gaussian distribution with variance governed by the path loss in Table I. Each band is assumed to experience flat fading. We compute the normalized mean square error (NMSE) of the compressively estimated power spectrum with respect to the Nyquist-rate based estimate (obtained by activating all N cosets in each sensor). Fig. 1 shows how increasing the compression rate per sensor up to $M/N = 0.19$ improves the estimation quality. The estimation quality is also improved by having either more sensors PZ or more samples per coset L.

![NMSE vs. Number of Sensors per Group](image)

Fig. 1. The NMSE between the compressively reconstructed power spectrum and the one reconstructed from the Nyquist rate samples.

Table I

<table>
<thead>
<tr>
<th>User band (rad/sample)</th>
<th>Power/freq. (per rad/sample)</th>
<th>Path loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\pi}{4}$</td>
<td>38 dBm</td>
<td>-18 dB</td>
</tr>
<tr>
<td>$\frac{\pi}{8}$</td>
<td>40 dBm</td>
<td>-19 dB</td>
</tr>
<tr>
<td>$\frac{\pi}{12}$</td>
<td>34 dBm</td>
<td>-11 dB</td>
</tr>
<tr>
<td>$\frac{\pi}{16}$</td>
<td>34 dBm</td>
<td>-17 dB</td>
</tr>
<tr>
<td>$\frac{\pi}{24}$</td>
<td>32 dBm</td>
<td>-13 dB</td>
</tr>
<tr>
<td>$\frac{\pi}{32}$</td>
<td>35 dBm</td>
<td>-19 dB</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>N</th>
<th>Non-overlapping circular Golomb rulers that cover all of the N integer distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>$M_0 = {0, 1, 17}, M_1 = {0, 2, 12}, M_2 = {0, 3, 24}, M_3 = {0, 4, 13}$</td>
</tr>
<tr>
<td>49</td>
<td>$M_0 = {0, 1, 13}, M_1 = {0, 2, 20}, M_2 = {0, 3, 14}, M_3 = {0, 4, 30}$</td>
</tr>
<tr>
<td>55</td>
<td>$M_0 = {0, 1, 15}, M_1 = {0, 2, 23}, M_2 = {0, 3, 16}, M_3 = {0, 4, 33}$</td>
</tr>
<tr>
<td>61</td>
<td>$M_0 = {0, 1, 16}, M_1 = {0, 2, 39}, M_2 = {0, 3, 17}, M_3 = {0, 4, 38}$</td>
</tr>
<tr>
<td>67</td>
<td>$M_0 = {0, 1, 18}, M_1 = {0, 2, 42}, M_2 = {0, 3, 19}, M_3 = {0, 4, 41}$</td>
</tr>
<tr>
<td>73</td>
<td>$M_0 = {0, 1, 44}, M_1 = {0, 2, 20}, M_2 = {0, 3, 44}, M_3 = {0, 4, 21}$</td>
</tr>
<tr>
<td>79</td>
<td>$M_0 = {0, 1, 28}, M_1 = {0, 2, 21}, M_2 = {0, 3, 38}, M_3 = {0, 4, 22}$</td>
</tr>
<tr>
<td>85</td>
<td>$M_0 = {0, 1, 32}, M_1 = {0, 2, 29}, M_2 = {0, 3, 50}, M_3 = {0, 4, 24}$</td>
</tr>
<tr>
<td>91</td>
<td>$M_0 = {0, 1, 59}, M_1 = {0, 2, 24}, M_2 = {0, 3, 54}, M_3 = {0, 4, 25}$</td>
</tr>
<tr>
<td>97</td>
<td>$M_0 = {0, 1, 18}, M_1 = {0, 2, 21}, M_2 = {0, 3, 38}, M_3 = {0, 4, 26}$</td>
</tr>
<tr>
<td>103</td>
<td>$M_0 = {0, 1, 27}, M_1 = {0, 2, 26}, M_2 = {0, 3, 29}, M_3 = {0, 4, 27}$</td>
</tr>
<tr>
<td>109</td>
<td>$M_0 = {0, 1, 28}, M_1 = {0, 2, 42}, M_2 = {0, 3, 28}, M_3 = {0, 4, 62}$</td>
</tr>
<tr>
<td>115</td>
<td>$M_0 = {0, 1, 30}, M_1 = {0, 2, 45}, M_2 = {0, 3, 31}, M_3 = {0, 4, 64}$</td>
</tr>
</tbody>
</table>

References

